Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26371, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404765

RESUMO

Thermal energy harvesting has seen a rise in popularity in recent years due to its potential to generate renewable energy from the sun. One of the key components of this process is the solar absorber, which is responsible for converting solar radiation into thermal energy. In this paper, a smart performance optimization of energy efficient solar absorber for thermal energy harvesting is proposed for modern industrial environments using solar deep learning model. In this model, data is collected from multiple sensors over time that measure various environmental factors such as temperature, humidity, wind speed, atmospheric pressure, and solar radiation. This data is then used to train a machine learning algorithm to make predictions on how much thermal energy can be harvested from a particular panel or system. In a computational range, the proposed solar deep learning model (SDLM) reached 83.22 % of testing and 91.72 % of training results of false positive absorption rate, 69.88 % of testing and 81.48 % of training results of false absorption discovery rate, 81.40 % of testing and 72.08 % of training results of false absorption omission rate, 75.04 % of testing and 73.19 % of training results of absorbance prevalence threshold, and 90.81 % of testing and 78.09 % of training results of critical success index. The model also incorporates components such as insulation and orientation to further improve its accuracy in predicting the amount of thermal energy that can be harvested. Solar absorbers are used in industrial environments to absorb the sun's radiation and turn it into thermal energy. This thermal energy can then be used to power things such as heating and cooling systems, air compressors, and even some types of manufacturing operations. By using a solar deep learning model, businesses can accurately predict how much thermal energy can be harvested from a particular solar absorber before making an investment in a system.

2.
IEEE Trans Nanobioscience ; 23(2): 328-335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271173

RESUMO

Biosensors are needed for today's health monitoring system for detecting different biomolecules. Graphene is a monolayer material that can be utilized to sense biomolecules and design biosensors. We have proposed a Graphene-Gold-Silver hybrid structure design based on Zinc Oxide which gives sensitive performance to detect hemoglobin biomolecules. The advanced biosensor designed based on this hybrid structure shows the highest sensitivity of 1000 nm/RIU which is far better concerning similar structure previously analyzed. The graphene-gold-silver hybrid structure is presented for its possible reflectance results and electric field results. The E-field results match well with the reflectance results given by the sensitive hybrid structure. The sensing biomolecules are presented above the structure where a combination of graphene-gold-silver hybrid structure improves the sensitivity to a great extent. The optimized parameters are obtained by applying variations in the physical parameters of the design. The machine learning algorithm employed for reflectance prediction shows a high prediction accuracy and can be utilized for simulation resource reduction. The proposed biosensor can be used in real-time hemoglobin monitoring.


Assuntos
Técnicas Biossensoriais , Grafite , Ressonância de Plasmônio de Superfície/métodos , Prata/química , Grafite/química , Técnicas Biossensoriais/métodos , Ouro/química , Hemoglobinas
3.
Sci Rep ; 13(1): 15700, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735605

RESUMO

The construction of the four-port MIMO antenna in the form of a sickle is provided in the article. Initially, the single port element is designed and optimized. Next, a structure with two ports is created, and lastly, a design with four ports is completed. This process is repeated until the design is optimized. Three types of parametric analysis are considered, including variations in length, widths of sickle-shaped patches, and varying sizes of DGS. The frequency range of 2-8 GHz is used for structural investigation. The - 18.77 dB of return loss was observed at 3.825 GHz for a single-element structure. The optimized one-port structure provides a return loss of - 19.79 dB at 3.825 GHz. The port design offers a bandwidth of 0.71 GHz (3.515-4.225). The four-port design represents two bands that are observed at 3 GHz and 5.43 GHz. Both bands provide the return loss at respectively - 19.79 dB and - 20.53 dB with bandwidths of 1.375 GHz (2.14-3.515) and 0.25 GHz (5.335-5.585). The healthy isolation among both transmittance and reflectance response is achieved. The low-profile material was used to create the design that was presented. The article includes a comparison of the findings that were measured and those that were simulated. The four-port design that has been shown offers a total gain of 15.93 dB, a peak co-polar value of 5.46 dB, a minimum return loss of - 20.53 dB, a peak field distribution of 46.43 A/m and a maximum bandwidth of 1.375 GHz. The values for all diversity parameters like ECC are near zero, the Negative value of TARC, Near to zero MEG, DG is almost 10 dB, and a zero value of CCL is achieved. All diversity parameter performance is within the allowable range. The design is well suited for 5G and aeronautical mobile communication applications.

4.
Biosensors (Basel) ; 13(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37622845

RESUMO

In many fields, such as environmental monitoring, food safety, and medical diagnostics, the identification of organic compounds is essential. It is crucial to create exceptionally sensitive and selective sensors for the detection of organic compounds in order to safeguard the environment and human health. Due to its outstanding electrical, mechanical, and chemical characteristics, the two-dimensional carbon substance graphene has recently attracted much attention for use in sensing applications. The purpose of this research is to create an organic material sensor made from graphene for the detection of organic substances like phenol, ethanol, methanol, chloroform, etc. Due to its high surface-to-volume ratio and potent interactions with organic molecules, graphene improves the sensor's performance while the metasurface structure enables the design of highly sensitive and selective sensing elements. The suggested sensor is highly sensitive and accurate at detecting a broad spectrum of organic molecules, making it appropriate for a number of applications. The creation of this sensor has the potential to have a substantial impact on the field of organic sensing and increase the safety of food, medicine, and the environment. The graphene metasurface organic material sensor (GMOMS) was categorized into three types denoted as GMOMS1, GMOMS2, and GMOMS3 based on the specific application of the graphene chemical potential (GCP). In GMOMS1, GCP was applied on both the CSRR and CS surfaces. In GMOMS2, GCP was applied to the CS surface and the surrounding outer region of the CSRR. In GMOMS3, GCP was applied to the CSRR and the surrounding outer region of the CSRR surface. The results show that all three designs exhibit high relative sensitivity, with the maximum values ranging from 227 GHz/RIU achieved by GMOMS1 to 4318 GHz/RIU achieved by GMOMS3. The FOM values achieved for all the designs range from 2.038 RIU-1 achieved by GMOMS2 to 31.52 RIU-1 achieved by GMOMS3, which is considered ideal in this paper.


Assuntos
Grafite , Humanos , Águas Residuárias , Compostos Orgânicos , Fenol , Fenóis
5.
Micromachines (Basel) ; 14(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630164

RESUMO

Energy-efficient buildings are a new demand in the current era. In this paper, we present a novel metamaterial design aimed at achieving efficient solar energy absorption through a periodic MMA structure composed of a W-GaAs-W. The proposed structure can be implemented as the window coating and in turn it can absorb the incident solar energy and, then, this energy can be used to fulfill the energy demand of the building. Our results reveal significant improvements, achieving an average absorptance of 96.94% in the spectral range. Furthermore, we explore the influence of the angle of incidence on the absorber's response, demonstrating its angle-insensitive behavior with high absorption levels (above 90%) for incidence angles up to 60° for TE polarization and 40° for TM polarization. The proposed structure presents a significant advancement in metamaterial-based solar energy absorption. By exploring the effects of structural parameters and incident angles, we have demonstrated the optimized version of our proposed absorber. The potential applications of this metamaterial absorber in self-sufficient futuristic building technologies and self-sustaining systems offer new opportunities for harnessing solar energy and are a valuable contribution to future developments in the fields of metamaterials and renewable energy.

6.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512639

RESUMO

The need for high-speed communication has created a way to design THz antennas that operate at high frequencies, speeds, and data rates. In this manuscript, a THz MIMO antenna is designed using a metamaterial. The two-port antenna design proposed uses a complementary split-ring resonator patch. The design results are also compared with a simple patch antenna to show the improvement. The design shows a better isolation of 50 dB. A broadband width of 8.3 THz is achieved using this complementary split-ring resonator design. The percentage bandwidth is 90%, showing an ultrabroadband response. The highest gain of 10.34 dB is achieved with this design. Structural parametric optimization is applied to the complementary split-ring resonator MIMO antenna design. The designed antenna is also optimized by applying parametric optimization to different geometrical parameters. The optimized design has a 20 µm ground plane, 14 µm outer ring width, 6 µm inner ring width, and 1.6 µm substrate thickness. The proposed antenna with its broadband width, high gain, and high isolation could be applied in high-speed communication devices.

7.
Micromachines (Basel) ; 14(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37374776

RESUMO

Human tooth functionality is the most important for the human body to become fit and healthy. Due to the disease attacks in human teeth, parts may lead to different fatal diseases. A spectroscopy-based photonic crystal fiber (PCF) sensor was simulated and numerically analyzed for the detection of dental disorders in the human body. In this sensor structure, SF11 is used as the base material, gold (Au) is used as the plasmonic material, and TiO2 is used within the gold and sensing analyte layer, and the sensing medium for the analysis of the teeth parts is the aqueous solution. The maximum optical parameter values for the human tooth parts enamel, dentine, and cementum in terms of wavelength sensitivity and confinement loss were obtained as 28,948.69 nm/RIU and 0.00015 dB/m for enamel, 33,684.99 nm/RIU and 0.00028 dB/m, and 38,396.56 nm/RIU and 0.00087 dB/m, respectively. The sensor is more precisely defined by these high responses. The PCF-based sensor for tooth disorder detection is a relatively recent development. Due to its design flexibility, robustness, and wide bandwidth, its application area has been spreading out. The offered sensor can be used in the biological sensing area to identify problems with human teeth.

8.
Micromachines (Basel) ; 14(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37374816

RESUMO

The article represents the design of two port-based printed MIMO antenna structures that have the advantages of low profile, simple structure, good isolation, peak gain, directive gain, and reflection coefficient. The performance characteristics are observed for the four design structures by cropping the patch region, loading the slits near the hexagonal-shaped patch, and adding and removing the slots in the ground area. The antenna provides a least reflection coefficient of -39.44 dB, a maximum electric field of patch region of 33.3 V/cm, a total gain of 5.23 dB, and good values of total active reflection coefficient and diversity gain. The proposed design provides nine bands' response, a peak bandwidth of 2.54 GHz, and a peak bandwidth of 26.127 dB. The four proposed structures are fabricated using a low-profile material to support mass production. The comparison among simulated and fabricated structures is included to check the authenticity of the work. The performance assessment of the proposed design with other published articles is carried out for the performance observation. The suggested technique is analyzed over the wideband of frequency region 1 GHz to 14 GHz. The multiple band responses make the proposed work suitable for wireless applications in S/C/X/Ka bands.

9.
Micromachines (Basel) ; 14(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36838056

RESUMO

We proposed a novel approach based on a complementary split-ring resonator metamaterial in a two-port MIMO antenna, giving high gain, multiband results with miniature size. We have also analyzed a circular disk metasurface design. The designs are also defected using ground structure by reducing the width of the ground plane to 8 mm and etching all other parts of the ground plane. The electric length of the proposed design is 0.5λ × 0.35λ × 0.02λ. The design results are also investigated for a different variation of complementary split-ring resonator ring sizes. The inner and outer ring diameters are varied to find the optimized solution for enhanced output performance parameters. Good isolation is also achieved for both bands. The gain and directivity results are also presented. The results are compared for isolation, gain, structure size, and the number of ports. The compact, multiband, high gain and high isolation design can apply to WiMAX, WLAN, and satellite communication applications.

10.
Micromachines (Basel) ; 14(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677224

RESUMO

The manuscript represents a novel square tooth-enabled superstrate metamaterial loaded microstrip patch antenna for the multiple frequency band operation. The proposed tooth-based metamaterial antenna provides better gain and directivity. Four antenna structures are numerically investigated for the different geometry of the patch and tooth. These proposed structures are simulated, fabricated, measured, and compared for the frequency range of 3 GHz to 9 GHz. The electrical equivalent model of the split-ring resonator is also analyzed in the manuscript. The comparative analysis of all of the proposed structures has been carried out, in terms of several bands, reflectance response, VSWR, gain and bandwidth. The results are compared with previously published works. The effects are simulated using a high-frequency structure simulator tool with the finite element method. The measured and fabricated results are compared for verification purposes. The proposed structure provides seven bands of operation and 8.57 dB of gain. It is observed that the proposed design offers the multiple frequency band operation with a good gain. The proposed tooth-based metamaterial antenna suits applications, such as the surveillance radar, satellite communication, weather monitoring and many other wireless devices.

11.
IEEE Trans Nanobioscience ; 22(1): 92-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235518

RESUMO

Rapid detection of mycobacterium tuberculosis bacteria is very important in reducing tuberculosis disease. We propose a label-free graphene-based refractive index sensor using a machine learning approach that detects mycobacterium tuberculosis bacteria. The biosensor is designed for higher sensitivity by analyzing different parameters like substrate thickness, resonator thickness, and angle of incidence. Machine learning is applied to predict the values of absorption for different wavelengths. The machine learning model is applied to four different parameters (angle of incidence, substrate thickness, resonator thickness, graphene chemical potential) of the biosensor. The plus shape metasurface is placed above the graphene-SiO2 hybrid layer to improve the sensitivity. The comparative analysis with other published designs is also presented. The proposed sensor with its higher sensitivity and ability to detect mycobacterium tuberculosis bacteria can be used in biomedical devices for diagnostic applications. Experiments are performed to check the K-Nearest Neighbors (KNN)-regressor model's prediction efficiency for predicting absorption values of intermediate wavelengths. Different values of K and two test cases; R-50, U-50 are used to test the regressor models using the R2 Score as an evaluation metric. It is observed from the experimental results that, high prediction efficiency can be achieved using lower values of K in the KNN-Regressor model.


Assuntos
Grafite , Mycobacterium tuberculosis , Refratometria , Dióxido de Silício , Aprendizado de Máquina
12.
IEEE Trans Nanobioscience ; 22(2): 430-437, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36018868

RESUMO

Machine learning is the latest approach to optimize the performance of absorbers, sensors, etc. A sensor with behavior prediction using polynomial regression is presented. Three different variations of metasurfaces namely double split-ring resonator, single split ring resonator, split ring resonator with thin wire are analyzed. The proposed design aims to achieve the highest sensitivity by observing different designs and different parameter variation. The highest sensitivity is achieved for double split-ring resonator and single split ring resonator designs. The change in thickness of different parameter affect the absorption and the highest sensitivity is calculated based on these variations. The polynomial regression (PR) model is employed to predict the absorption values for assorted combinations of intermediate wavelength values with angle variation, substrate thickness, substrate length, substrate width, graphene potential, and resonator thickness values. Test Cases R-30 and R-50 are evaluated using R2 score metric to assess the effectiveness of PR model for predicting the values of absorption. R2 score close to 1.0 is achieved for all the experiments at a higher (more than 5) polynomial degree, which proves the prediction efficiency of a regression model. The proposed biosensor designed with a PR model can be applied in biomedical applications for hemoglobin detection.


Assuntos
Técnicas Biossensoriais , Grafite , Refratometria , Desenho de Equipamento , Modelos Estatísticos
13.
IEEE Rev Biomed Eng ; 16: 22-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36197867

RESUMO

This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large. The available virus detection techniques take a long time, are costly, and complex and some of them generates false negative or false positive that might cost patients their lives. The biosensor technique is one of the best qualified to address this difficult challenge. In this systematic review, we have summarized recent advancements in biosensor-based detection of these pandemic viruses including COVID-19. Biosensors are emerging as efficient and economical analytical diagnostic instruments for early-stage illness detection. They are highly suitable for applications related to healthcare, wearable electronics, safety, environment, military, and agriculture. We strongly believe that these insights will aid in the study and development of a new generation of adaptable virus biosensors for fellow researchers.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus , Infecção por Zika virus , Zika virus , Humanos , SARS-CoV-2 , Pandemias
14.
Diam Relat Mater ; 132: 109644, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36575667

RESUMO

We have proposed a novel approach to detect COVID-19 by detecting the ethyl butanoate which high volume ratio is present in the exhaled breath of a COVID-19 infected person. We have employed a refractive index sensor (RIS) with the help of a metasurface-based slotted T-shape perfect absorber that can detect ethyl butanoate present in exhaled breath of COVID-19 infected person with high sensitivity and in-process SARS-CoV-2. The optimized structure of the sensor is obtained by varying several structure parameters including structure length and thickness, slotted T-shape resonator length, width, and thickness. Sensor's performance is evaluated based on numerous factors comprising of sensitivity, Q factor, detection limit, a figure of merit (FOM), detection accuracy, and other performance defining parameters. The proposed slotted T-shape RIS achieved the largest sensitivity of 2500 nm/RIU, Q factor of 131.06, a FOM of 131.58 RIU-1, detection limit of 0.0224 RIU.

15.
IEEE Trans Nanobioscience ; 22(3): 614-621, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36383599

RESUMO

A graphene disk metasurface-inspired refractive index sensor (RIS) with a subwavelength structure is numerically investigated to enhance the functionality of flexible metasurface in the biosensor sector. The main aim behind the sensor development is to detect amino acids with high sensitivity. The results in form of transmittance and the electric field intensity are carried out to verify the sensor's performance. The optimal design of the proposed sensor is also obtained by varying several structural parameters such as glass-based substrate thickness, the inner radius of the graphene disk metasurface, and the angle of incidence. The proposed sensor is also wide-angle insensitive for the angle of incidence ranging from 0° to 60°. Furthermore, the sensor's attributes are analyzed based on numerous parameters with an achieved maximum sensitivity of 333.33 GHz/RIU, Figure of Merit (FOM) of 3.11 RIU-1, and Q-factor of 7.3 are achieved. As a result, these insights offered an enhanced direction for designing metasurface biosensors with a high Q-factor and FOM with high sensitivity for the detection of amino acids.


Assuntos
Aminoácidos , Grafite , Refratometria
16.
Sci Rep ; 12(1): 18044, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302877

RESUMO

Although different materials and designs have been tried in search of the ideal as well as ultra-wideband light absorber, achieving ultra-broadband and robust unpolarized light absorption over a wide angular range has proven to be a major issue. Light-field regulation capabilities provided by optical metamaterials are a potential new technique for perfect absorbers. It is our goal to design and demonstrate an ultra-wideband solar absorber for the ultraviolet to a mid-infrared region that has an absorptivity of TE/TM light of 96.2% on average. In the visible, NIR, and MIR bands of the solar spectrum, the absorbed energy is determined to be over 97.9%, above 96.1%, and over 95%, respectively under solar radiation according to the Air Mass Index 1.5 (AM1.5) spectrum investigation. In order to achieve this wideband absorption, the TiN material ground layer is followed by the SiO2 layer, and on top of that, a Cr layer with patterned Ti-based resonators of circular and rectangular multiple patterns. More applications in integrated optoelectronic devices could benefit from the ideal solar absorber's strong absorption, large angular responses, and scalable construction.

17.
Front Med (Lausanne) ; 9: 924979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052321

RESUMO

Interpretation of medical images with a computer-aided diagnosis (CAD) system is arduous because of the complex structure of cancerous lesions in different imaging modalities, high degree of resemblance between inter-classes, presence of dissimilar characteristics in intra-classes, scarcity of medical data, and presence of artifacts and noises. In this study, these challenges are addressed by developing a shallow convolutional neural network (CNN) model with optimal configuration performing ablation study by altering layer structure and hyper-parameters and utilizing a suitable augmentation technique. Eight medical datasets with different modalities are investigated where the proposed model, named MNet-10, with low computational complexity is able to yield optimal performance across all datasets. The impact of photometric and geometric augmentation techniques on different datasets is also evaluated. We selected the mammogram dataset to proceed with the ablation study for being one of the most challenging imaging modalities. Before generating the model, the dataset is augmented using the two approaches. A base CNN model is constructed first and applied to both the augmented and non-augmented mammogram datasets where the highest accuracy is obtained with the photometric dataset. Therefore, the architecture and hyper-parameters of the model are determined by performing an ablation study on the base model using the mammogram photometric dataset. Afterward, the robustness of the network and the impact of different augmentation techniques are assessed by training the model with the rest of the seven datasets. We obtain a test accuracy of 97.34% on the mammogram, 98.43% on the skin cancer, 99.54% on the brain tumor magnetic resonance imaging (MRI), 97.29% on the COVID chest X-ray, 96.31% on the tympanic membrane, 99.82% on the chest computed tomography (CT) scan, and 98.75% on the breast cancer ultrasound datasets by photometric augmentation and 96.76% on the breast cancer microscopic biopsy dataset by geometric augmentation. Moreover, some elastic deformation augmentation methods are explored with the proposed model using all the datasets to evaluate their effectiveness. Finally, VGG16, InceptionV3, and ResNet50 were trained on the best-performing augmented datasets, and their performance consistency was compared with that of the MNet-10 model. The findings may aid future researchers in medical data analysis involving ablation studies and augmentation techniques.

18.
Sci Rep ; 12(1): 12354, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854049

RESUMO

Antenna design has evolved from bulkier to small portable designs but there is a need for smarter antenna design using machine learning algorithms that can meet today's high growing demand for smart and fast devices. Here in this research, main focus is on developing smart antenna design using machine learning applicable in 5G mobile applications and portable Wi-Fi, Wi-MAX, and WLAN applications. Our design is based on the metamaterial concept where the patch is truncated and etched with a split ring resonator (SRR). The high gain requirement is met by adding metamaterial superstrates having thin wires (TW) and SRRs. The reconfigurability is achieved by adding three PIN diode switches. Multiple designs have been observed by adding superstrate layers ranging from one layer to four layers with interchanging TWs and SRRs. The TW metamaterial superstrate design with two layers is giving the best performance in gain, bandwidth, and the number of bands. The design is optimized by changing the path's physical parameters. To shrink simulation time, Extra Tree Regression based machine learning model is used to learn the behavior of the antenna and predict the reflectance value for a wide range of frequencies. Experimental results prove that the use of the Extra Tree Regression based model for simulation of antenna design can cut the simulation time, resource requirements by 80%.


Assuntos
Eletrônica , Tecnologia sem Fio , Simulação por Computador , Desenho de Equipamento , Aprendizado de Máquina
19.
Sci Rep ; 12(1): 10166, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715482

RESUMO

Energy utilization is increasing day by day and there is a need for highly efficient renewable energy sources. Solar absorbers with high efficiency can be used to meet these growing energy demands by transforming solar energy into thermal energy. Solar absorber design with highly efficient and Ultra-broadband response covering visible, ultraviolet, and near-infrared spectrum is proposed in this paper. The absorption response is observed for three metamaterial designs (plus-shape slotted design, plus-shape design, and square-shape design) and one optimized design is used for solar absorber design based on its high efficiency. The design results are compared with AM 1.5 spectral irradiance response. The electric field response of the plus-shape slotted metamaterial design is also presented which matches well with the absorption results of different solar spectrum regions. The results proved that the attained absorption response showing wide angle of incidence. Machine learning is also used to examine the design data in order to forecast absorption for various substrate thickness, metasurface thickness, and incidence angles. Regression and forecasting simulations based on machine learning are used to try to anticipate absorber behaviour at forthcoming and intermediate wavelengths. Simulation results prove that Machine Learning based methods can lessen the obligatory simulation resources, time and can be used as an effective tool while designing the absorber. The proposed highly efficient, wide-angle, ultra-broadband solar absorber design with its behavior prediction capability using machine learning can be utilized for solar thermal energy harvesting applications.

20.
Sci Rep ; 12(1): 2609, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173249

RESUMO

Solar absorber is required to absorb most of the energy of the solar spectral irradiance. We propose a graphene-based solar absorber design with two different metasurfaces to improve this absorption and increase the efficiency of the solar absorber. The metasurfaces are selected based on their symmetrical/asymmetrical nature (O-shape and L-shape). The O-shape metasurface design is showing better performance over the L-shape metasurface design. The absorption performance is also compared with AM 1.5 solar spectral irradiance to show the effectiveness of the solar absorber. The absorption values are also enhanced by varying the parameters like resonator thickness and substrate thickness. The proposed solar absorber design gives maximum absorption in the ultraviolet and visible range. Furthermore, the design is also showing a high and similar absorption rate over a wide angle of incidence. The absorption of O-shape metasurface design is also predicted using machine learning. 1D-Convolutional Neural Network Regression is used to develop a Machine Learning model to determine absorption values of intermediate wavelength for assorted values of angle of incidence, resonator thickness, and substrate thickness. The results of experiments reveal that absorption values may be predicted with a high degree of accuracy. The proposed absorber with its high absorbing capacity can be applied for green energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...